

Pendless White Paper

Prepared by the Pendless Founding Team
November, 2025

Table of Contents:
Table of Contents:​ 1
Executive Summary​ 1
Problem Statement​ 2
Pendless Vision​ 3
Technical Architecture​ 3
Development Insights​ 5
Core Features​ 7
Use Cases​ 8
Comparison to Alternatives​ 9
Accuracy and Speed​ 10
Future Roadmap​ 11
Conclusion​ 12

Executive Summary
Pendless is a new kind of browser automation platform — one that turns plain English
instructions into web actions in seconds. No infrastructure, no training, no maintenance
headaches. Whether through a chat interface or an enqueueing API, Pendless lets users
automate anything they can do in a browser — from filling out forms to collecting data — with
the same precision as traditional code-based tools, but with none of their complexities.

At its core, Pendless introduces a queue-based automation model. Tasks can be enqueued,
organized, and executed sequentially or programmatically through the Pendless API. This
architecture makes automation predictable, traceable, and easy to integrate into existing
systems. Each task runs directly within a browser context, ensuring compatibility with dynamic
sites and real-world web behaviors.

Beyond automation, Pendless is designed as a conversation with the browser. Users can
instruct it naturally and modify tasks through a chat-like interface that feels intuitive yet operates

© Pendless, 2025. All rights reserved.

with technical depth. Developers can extend the same capability through APIs that
programmatically enqueue and manage tasks, allowing seamless integration with scripts,
dashboards, and backend services.

Pendless was built to make web automation accessible and reliable. By unifying conversational
control, task orchestration, and API-based extensibility, it lays the foundation for a new category
of browser-native automation — one where the web becomes not just a place you visit, but a
workspace you can program.

Problem Statement

In our decades of experience in IT development and delivery, we’ve seen a recurring, deeply
human fear: being replaced by machines. As we enter this new AI spring driven by large
language models, it’s time to face a truth — yes, AI will remove jobs. But we must ask: which
jobs? Ideally, the boring ones nobody wants to do. Ask any teenager what they aspire to be —
none will say “data entry specialist.”

In our view, much of the current discourse around AI is misdirected. While many efforts focus on
replacing professionals like doctors or lawyers, or creatives like designers and musicians, the
real opportunity lies in freeing humans from mechanical, repetitive work. Human activity should
remain fundamentally human — enhanced by technology, not displaced by it. Since the
industrial revolution, progress has always meant building tools that extend our abilities, not ones
that replace our purpose.

That’s the principle at the core of Pendless: AI should improve our relationship with machines,
not distort relationships between humans.

Across our careers, we’ve watched organizations celebrate the latest AI demos while teams
next door spent countless hours performing manual, repetitive browser tasks — filling forms,
copying data, re-uploading files, reporting to agencies. Large enterprises have adopted Robotic
Process Automation (RPA) tools to address this, but those systems are expensive, rigid, and
fragile. A single change in a target website can break the entire automation pipeline, forcing
costly rebuilds and delays — all under hefty license fees.

But what about small and medium businesses? These highly competitive, operations-driven
teams still rely on human labor for browser-based workflows — tasks that are time-consuming,
error-prone, and unfulfilling. Studies show that workers spend an average of 581 hours per
year on repetitive digital activities, and 60% believe they could save at least six hours a week
with proper automation. Yet only 20% of SMBs have any RPA or automation solution in place —
mainly due to cost, complexity, and poor ROI (Sources: McKinsey, Smartsheet).

© Pendless, 2025. All rights reserved.

Pendless Vision

We built Pendless for the rest of us - an AI powered robot that lives in the browser and is ready
to automate any web task expressed in plain English. It’s fast, reliable, and ready to help
businesses of any size automate everyday workflows without code, without setup, and without
depending on external infrastructure.

Pendless embodies our mission: to empower companies to stay competitive with practical,
human-centered AI that works. We believe automation should amplify people, not replace
them— freeing teams from mindless tasks so they can focus on creative, strategic, and
meaningful work.

Technical Architecture

At the beginning of our development journey, we faced several strategic decisions. Should we
build a desktop robot? Fork our own version of Chromium? Or use a browser emulator to
interact directly with web services? All these options contradicted our principle of keeping things
simple. Instead, we chose to build a Google Chrome Extension, leveraging its code injection
capabilities to interact seamlessly with web pages.
Pendless follows a four-layer architecture:

1.​ 1. Chrome Extension Side Panel. This serves as the user interface, organized into three
tabs:

○​ Chat – a conversation with the AI where users can ask questions, test, and
organize automations.

○​ Queue – a list of tasks ready to be executed, with options for automatic
execution.

○​ Gallery – a collection of saved or pre-tested prompts for future use.​

2.​ Automation Engine. The engine injects automation code directly into the target page,
allowing direct access to the DOM. Its dual role is to:

○​ Understand the current page elements.
○​ Execute automations reliably.

This layer is critical: it bridges the gap between AI instructions and real-world browser
actions, overcoming limitations inherent in dynamic web pages.

© Pendless, 2025. All rights reserved.

3.​ Server-Side Processing. Beyond standard tasks like user management and usage

tracking, the server processes requests from the Automation Engine. It curates the
DOM, prepares instructions for the LLM, and handles guardrails that stabilize the AI
output. We benchmarked multiple approaches and decided to use OpenAI’s completion
API. Despite careful input stabilization, LLM outputs still require significant server-side
processing to produce reliable automation instructions.​

4.​ Enqueueing API. A simple yet robust API allows tasks to be enqueued on Pendless.
Developers can submit a URL and desired action in natural language, then monitor
status and feedback. Combined with an auto-start toggle in the Queue, this enables fully
unsupervised, no-code automations directly in the browser.

We’ve also added middleware origination points, like automated email readers or task
launchers from folders, and we plan to expand this stack further.

Performance, Security and Reliability

Our measurements show that 90% of automation time is due to the LLM API latency, which we
expect to decrease as model infrastructure and bandwidth continue to improve. A fully
autonomous Pendless instance can currently execute complex tasks in roughly 30 seconds.
This performance has important implications. By eliminating human reaction time, navigation
delays, and the risk of manual errors, Pendless delivers not only faster results but also
consistency at scale — every execution takes the same predictable path, with identical timing
and precision. Tasks that might take a human several minutes can be completed in seconds,
and repeated hundreds or thousands of times without degradation in accuracy or attention. In
operational environments, this consistency translates to measurable gains in throughput,
reliability, and overall process stability.

Security and reliability are central to our design. Communications and storage are encrypted,
and by default, conversations are not stored due to potential sensitive content. We implemented
multiple guardrails against hallucinations from the LLM. Our experience shows that the OpenAI
API’s temperature parameter alone is insufficient: too low, and the system cannot define
automation steps; too high, and it may ignore our guardrails. Pendless is designed to execute
exactly what it is told, relying on well-defined prompts while minimizing unintended behaviors.

Limitations

While Pendless is designed for reliability and versatility, certain constraints remain:

© Pendless, 2025. All rights reserved.

●​ Synthetic interactions: Some web pages implement protections that prevent simulated

clicks or inputs, which may limit automation on highly protected sites.
●​ Iframes and embedded content: Automations cannot always access content inside

cross-origin iframes due to browser security policies.
●​ Non-HTML content: Pendless currently cannot interpret or extract information from

images or PDF documents.
●​ Dynamic rendering edge cases: Very complex single-page applications or heavily

obfuscated DOM structures may require carefully crafted prompts or additional
adjustments.​

These limitations are inherent to the browser context and web security model. Understanding
them allows users to design tasks within the scope where Pendless excels — interactive
HTML-based web workflows.

Agentic vs. Robotic Behavior

A key design decision was defining Pendless’s orientation. With clear prompts, Pendless
behaves robotically, executing tasks predictably. When instructions are less defined, the AI
exhibits full agentic behavior: it performs intermediate actions, monitors the results, and waits for
feedback before completing the task. This allows the system to adapt to uncertain scenarios
while still ultimately following the user’s intent.

Development Insights

Learning from using Pendless ourselves​
 Throughout development, the team became natural users of Pendless. This experience
reinforced a key insight: well-crafted prompts directly affect automation reliability. Saving tested
prompts to the Gallery not only preserves successful automations but also improves efficiency
over time. Iterating on prompts during early tests helped shape a user-centric interface and
practical workflow patterns.

Prompt engineering and LLM behavior​
 Even after stabilizing inputs, the AI output required extensive processing to become a
dependable automation instruction set. We learned that:

●​ Temperature settings alone are insufficient for reliability. Low temperatures limit the
system’s ability to define steps, while high temperatures break guardrails, making the
system too imaginative.

●​ The AI exhibits random variations in output, which can impact stability. Addressing this
became a full subproject, critical to ensuring consistent operations for users.

●​ Iterative conversations with Pendless helped us refine prompts, teaching us how to
achieve precise, predictable automations. This hands-on learning remains valuable

© Pendless, 2025. All rights reserved.

advice for users seeking the most reliable results.​

Stability and feedback loops​
When instructions are incomplete or ambiguous, the system engages in full agentic behavior:
performing intermediate actions, monitoring results, and waiting for feedback before completing
a task. Understanding this behavior guided our approach to prompt design and system
guardrails, balancing flexibility with control.

Security and reliability practices​
 Sensitive data handling shaped several design choices:

●​ Communications and storage are fully encrypted.
●​ Conversations are not stored by default to protect user data.
●​ Multiple filters and safeguards minimize hallucination risks, ensuring the system

executes instructions as intended while adhering to predictable behavior patterns.​

Middleware and automation triggers​
 Experiments with origination points, such as automated email readers or task launchers from
folders, highlighted opportunities to expand Pendless beyond the core UI. These middlewares
enhance usability, allowing tasks to start from diverse sources and improving workflow
efficiency.

Key takeaway​
The overarching lesson from our development journey is that stability, predictability, and
reliability emerge from a combination of solid architecture, careful prompt design, and thoughtful
feedback management. Pendless is designed to follow instructions precisely, while gracefully
handling ambiguity when necessary — a balance that distinguishes it from traditional RPA or
naïve AI automation solutions.

A curiosity

Early in development, we discovered that the most effective Pendless prompt builder was
Pendless itself. We repeatedly asked the system how to craft the best prompts to generate
reliable automation sequences, and in doing so, we learned as much from its suggestions as
from our own experimentation.

Core Features

Pendless was designed around a single idea: browser automation should feel as natural as
telling someone what to do. Every capability in the platform exists to make that possible —

© Pendless, 2025. All rights reserved.

combining the intuitiveness of conversation with the reliability of engineered automation. The
result is a system that adapts to users rather than forcing users to adapt to it.

Conversational Automation Interface

At the heart of Pendless lies its chat-based interface. Users can simply describe what they want
done in natural language — “fill this form,” “extract these records,” “summarize this page” — and
Pendless translates those instructions into structured automation sequences. Each conversation
becomes an evolving workspace where users can refine prompts, inspect results, and save
improvements. This approach bridges human intent and executable action, eliminating the
technical barrier that traditionally separates users from automation.

Queue-Based Orchestration

Pendless introduces a queue model for managing automations. Tasks can be enqueued,
reordered, and executed manually or automatically, making processes predictable and
traceable. This architecture provides a transparent workflow — users can always see what’s
running, what’s pending, and what’s completed. It also allows Pendless to be integrated into
more complex automation pipelines, enabling businesses to coordinate multiple browser tasks
with precision and accountability.

Prompt Gallery and Knowledge

Experience showed us that better prompts lead to better automations. The Prompt Gallery was
designed to preserve that knowledge. Users can save their best-performing prompts, reuse
them across projects, or share them with teams. Over time, organizations can build internal
libraries of reliable automations, transforming prompt engineering into an asset rather than a
one-off experiment.

Enqueueing API and System Integration

Beyond the interface, Pendless exposes its capabilities through a lightweight API (see our
GitHub page). Developers can enqueue tasks programmatically by sending a URL and an
instruction in natural language, and then monitor execution and feedback. This API design
allows Pendless to be embedded into scripts, dashboards, and backend systems — effectively
turning it into a no-code, browser-native automation layer for existing workflows.

Agentic Responsiveness

When prompts are incomplete or ambiguous, Pendless doesn’t fail silently — it acts agentically.
The AI performs intermediate steps, evaluates their outcome, and waits for feedback before
completing the task. This balance between autonomy and control lets Pendless adapt to
uncertain or dynamic web environments while preserving reliability.

© Pendless, 2025. All rights reserved.

https://github.com/wearependless/pendless-api

Use Cases
Pendless can be applied wherever repetitive browser work occurs, but its value becomes
clearer when we categorize potential uses along four conceptual axes: Read-oriented,
Write-oriented, Combination of Read and Write, and Web Application Interaction.

Read-Oriented Tasks

These automations focus on extracting information from web sources. Pendless can read
content from websites, scrape structured data, monitor changes, or summarize text.

●​ Example: Collecting product prices across competitor sites, tracking stock updates, or
aggregating news for market research.​

●​ Value: Saves human attention for analysis rather than collection.

Write-Oriented Tasks

These involve inputting, submitting, or posting information into web interfaces. Pendless can fill
forms, upload data, or post content across multiple platforms automatically.

●​ Example: Uploading inventory information to an e-commerce platform or submitting bulk
reports to a government portal.​

●​ Value: Reduces repetitive manual input, preventing errors and accelerating throughput.​

Combined Read-and-Write Tasks

Many workflows require both reading and writing — for example, collecting data and using it to
update another system. Pendless handles these multi-step automations seamlessly.

●​ Example: Monitoring customer feedback on multiple channels, analyzing sentiment, and
updating CRM entries automatically.​

●​ Value: Streamlines complex processes that are tedious and error-prone when done
manually.

Web Application Interaction

Beyond standard forms and pages, Pendless can automate dynamic web applications, such as
dashboards, SaaS tools, or internal web platforms. These tasks often involve conditional logic,
multiple navigation steps, or interacting with single-page applications.

© Pendless, 2025. All rights reserved.

●​ Example: Performing automated QA in a web app, filling workflow templates, or

interacting with multi-tab dashboards.​

●​ Value: Extends automation to environments traditionally difficult to manage, with AI
adapting to interface changes and user-defined goals.

By categorizing use cases this way, we illustrate Pendless’s versatility while highlighting the
core focus on browser-native tasks. Whether reading, writing, combining both, or interacting with
complex web apps, the system transforms repetitive web workflows into reliable, predictable
automations.

Comparison to Alternatives

Pendless exists in the broad landscape of automation tools, ranging from traditional Robotic
Process Automation (RPA) platforms to modern no-code workflow builders. Each approach
serves a different purpose — and understanding these boundaries highlights what makes
Pendless unique.

Category Pendless Traditional RPA Systems No-Code Automation
Tools

Scope Focused on browser-based
automation — runs where
humans already work: inside
Chrome.

Broad system-level automation
across desktop apps, legacy
systems, APIs, and databases.

App integrations through
prebuilt connectors (e.g.,
Google Sheets → Slack).

Setup Lightweight, no install beyond a
Chrome extension.

Heavy infrastructure, requires
setup and orchestration.

Cloud-based, simple setup
but limited to supported
apps.

Interface Conversational — automation is
created through natural
language prompts.

Technical, requires detailed
scripting and mapping.

Visual block or form-based
builder.

Execution Runs in the browser, leveraging
Chrome’s DOM and user
context.

Executes on virtual machines
or desktop agents.

Executes via cloud
services, often detached
from user context.

© Pendless, 2025. All rights reserved.

Flexibility Adapts dynamically to web
changes, guided by AI
interpretation.

Deterministic, needs explicit
mapping for every step.

Limited to predefined app
actions.

Integration Through Pendless Queue and
API.

Via enterprise connectors and
orchestrators.

Through third-party
integration libraries.

Target User Knowledge workers, product
teams, startups — anyone who
automates browser work.

IT departments and large
enterprises with cross-system
needs.

SMBs or individuals
automating simple app
workflows.

Accuracy and Speed

Pendless conducted a head-to-head benchmark against Perplexity’s Comet Browser Agent
using an identical set of 34 automation prompts. The benchmark evaluated four core
dimensions critical to browser-based automation performance: execution speed, precision,
recall, and general error rate.

Across the 34 test prompts, Pendless achieved an average execution time of 23.4 seconds per
task, compared with 2 minutes and 13 seconds for Comet. Precision — the percentage of
steps correctly performed out of all attempted steps — reached 97.2 percent, compared to
Comet’s 93.3 percent. Recall, measuring how many of the required workflow steps were actually
completed, also favored Pendless by a wide margin. Pendless achieved 97.9 percent recall
versus Comet’s 93.6 percent.

Future Roadmap
Pendless is designed as a living platform, capable of evolving with user needs, AI
advancements, and the changing web. Our roadmap reflects both short-term enhancements
and long-term strategic directions:

 Expanded Middleware and Origination Points

We plan to grow the library of middleware connectors, enabling automations to be triggered
from diverse sources — email, folders, webhooks, or other events. These origination points will
allow businesses to integrate Pendless seamlessly into their existing workflows.

© Pendless, 2025. All rights reserved.

Third-Party Tool Integrations

To broaden utility, Pendless will seek deeper integration with popular SaaS platforms,
productivity tools, and enterprise dashboards. By connecting directly to external systems, users
will be able to orchestrate cross-platform workflows with the same natural-language simplicity.

Desktop Expansion

Now that we have stabilized LLM input and refined feedback mechanisms, the next step is
moving beyond the browser. A desktop version of Pendless will extend automation to
applications outside Chrome, bringing its conversational, queue-based orchestration to a wider
range of workflows while preserving reliability and security.

Team Collaboration and Knowledge Sharing

We envision shared prompt libraries, team-level automation galleries, and analytics on task
usage. These features will turn individual automations into collective organizational knowledge,
fostering efficiency and consistency across teams.

Images and PDFs

We plan to extend Pendless’s capabilities to support image and PDF content extraction. This
will enable automations that currently require manual interpretation, further broadening the
system’s applicability while maintaining the platform’s principles of reliability and
natural-language-driven task execution.

Optional Local Relay for OS-Level Interactions that bypass certain restrictions

Some websites intentionally block synthetic browser interactions as a security measure, which
limits what in‑browser automation can do. One pragmatic path forward is an optional local relay
(agent): a small, signed OS-level helper that users install and explicitly authorize. The Chrome
extension would send authenticated, minimal click/input orders to the local relay over a secure
channel; the relay would then synthesize native input events within the operating system
(mouse/keyboard events, window focus), allowing interactions that are indistinguishable from
real user input at the OS level.

Conclusion

Pendless represents a new approach to browser automation, combining natural-language
instruction, queue-based orchestration, and AI-guided task execution. By operating directly
within the browser, it enables reliable, repeatable automation of web workflows without the
complexity or overhead of traditional RPA systems.

© Pendless, 2025. All rights reserved.

The platform’s design — including its Chrome Extension interface, Automation Engine,
server-side processing, and enqueueing API — ensures that tasks are executed precisely,
feedback is incorporated, and intermediate states are monitored for consistency. Lessons
learned during development, particularly around prompt design, LLM output stabilization, and
agentic behavior, have informed a system that balances flexibility with predictability.

Looking forward, Pendless is positioned to expand its capabilities: more middleware, deeper
third-party integrations, autonomous multi-step execution, and eventual desktop support. Each
development path is guided by the same principles of reliability, transparency, and efficiency,
ensuring that automation enhances existing workflows rather than complicates them.

In sum, Pendless demonstrates that browser-native automation can be both technically robust
and accessible, providing a platform where complex web tasks can be executed with minimal
human intervention while retaining full oversight and control.

© Pendless, 2025. All rights reserved.

	Pendless White Paper
	Table of Contents:
	
	Executive Summary
	Problem Statement
	Pendless Vision
	Technical Architecture
	Development Insights
	Core Features
	Use Cases
	Comparison to Alternatives
	
	Accuracy and Speed
	Future Roadmap
	Conclusion

